Jigsaw 1C

Introduction to Nuclear Magnetic Resonance

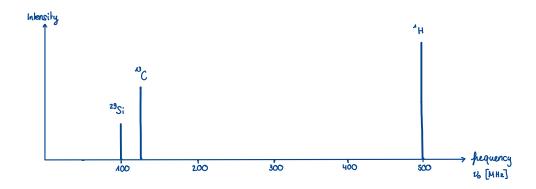
1.75/2

1. * [Keeler Sections 2.1 and 3.2] The international reference compound used in NMR to set up the chemical shift scale is tetramethylsilane, Si(CH₃)₄, commonly known as TMS. Consider a sample containing pure liquid TMS for analysis. *See also: Jigsaw 1B.1*

Isotope	Nuclear Spin	Natural Abundance	γ / rad·s ⁻¹ ·T ⁻¹
¹ H	1/2	~100%	2.675×10 ⁸
12 _C	0	98,89%	0
¹³ C	1/2	1,117.	6,728·10 ⁷
28 Si	0	92,2%	0
²⁹ Si	1/2	4,7%	FON PNE,2-
³°Si	0	3,1%	0

a. Complete the table above by filling in the most common isotope(s) present in the sample (list all isotopes with ≥ 1% natural abundance), the nuclear spin, the natural abundance, and the gyromagnetic ratio of each isotope. Which isotopes are NMR-active? Why?

b. [Keeler Section 3.3] Consider a magnetic field strength (B_0) of 11.7467 T. What are the resonance frequencies of the active nuclei (in MHz)?


```
To calculate the resonance frequencies, we used this formula: v_0 = \frac{-\gamma B_0}{2\pi} \qquad \text{where } B_0 \text{ is the magnetic field strength and } \gamma \text{ the gyromagnetic ratio in rad.s.^A.T.^A}
We only calculated the resonance frequency for the NMR-active isotops.

• ^4\text{H}: V_0 = \frac{-2.675 \cdot 10^8 \cdot 10.7467}{2\pi} \simeq -500.4 \,\text{MHz}

• ^4\text{C}: V_0 = \frac{-6.728 \cdot 10^7 \cdot 10.7467}{2\pi} \simeq -125.8 \,\text{MHz}

• ^2\text{S}_0: V_0 = \frac{-6.728 \cdot 10^7 \cdot 10.7467}{2\pi} \simeq 99.4 \,\text{MHz}
```

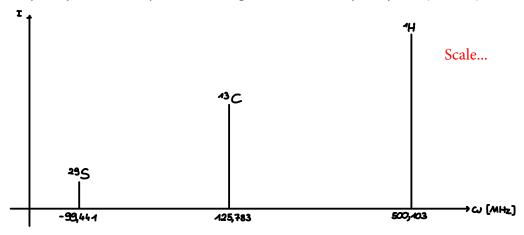
c. Considering the high symmetry of the molecule and neglecting all couplings, each nucleus gives rise to a single peak in the spectrum at the resonance frequency. Draw the spectrum, using an absolute frequency axis (in MHz).

Jigsaw 1C

Introduction to Nuclear Magnetic Resonance

1. * [Keeler Sections 2.1 and 3.2] The international reference compound used in NMR to set up the chemical shift scale is tetramethylsilane, Si(CH₃)₄, commonly known as TMS. Consider a sample containing pure liquid TMS for analysis. See also: Jigsaw 1B.1

Isotope	Nuclear Spin	Natural Abundance	γ / rad·s ⁻¹ ·T ⁻¹
¹ H	1/2	~100%	2.675×10 ⁸
12 C	0	38,89	0
13 _C	1/2	1,11	6,728.407
²⁸ Si	0	92,232	0
²⁹ Si	1/3	4,699	-5,319·10 ⁷
³⁰ Si	0	3,092	0


a. Complete the table above by filling in the most common isotope(s) present in the sample (list all isotopes with ≥ 1% natural abundance), the nuclear spin, the natural abundance, and the gyromagnetic ratio of each isotope. Which isotopes are NMR-active? Why?

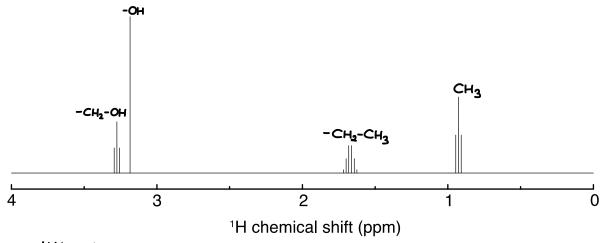
¹H, ¹³C and ²³Si are NMR active as their spin is mon zero.

b. [Keeler Section 3.3] Consider a magnetic field strength (B_0) of 11.7467 T. What are the resonance frequencies of the active nuclei (in MHz)?

$$ω=δ6$$
 $ω(^4H)=500,703 MHz$
 $ω(^{45}C)=725,783 MHz$
 $ω(^{29}Si)=-99,447 MHz$

c. Considering the high symmetry of the molecule and neglecting all couplings, each nucleus gives rise to a single peak in the spectrum at the resonance frequency. Draw the spectrum, using an absolute frequency axis (in MHz).

1.75/2


d. * [Keeler Section 2.4] Why is it not possible to detect this theoretical spectrum, i.e. to detect heteronuclei in one single experiment?

Different nucle: have different 8, meaning that they resonate at different frequency for a given B field strength

Within the same nuclei the differences in frequency are really small so we need to focus on one region to observe their difference.

2. * [Keeler Section 2.3] The following 1 H spectrum is of a molecule with the chemical formula $C_{4}H_{10}O$. Predict the structure of the molecule, assign the spectrum, and give the relative intensities of the signals.

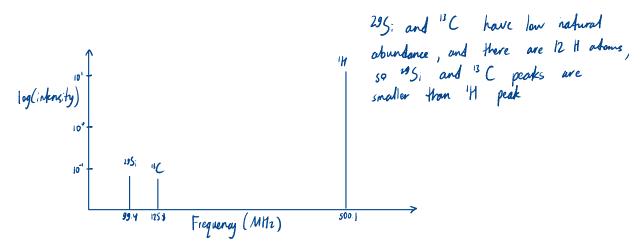
0/2

No. CH3CH2CH2OCH3

·butan-1-ol

Jigsaw 1C

Introduction to Nuclear Magnetic Resonance

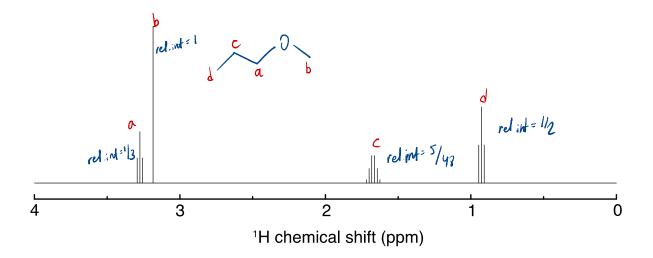

1. * [Keeler Sections 2.1 and 3.2] The international reference compound used in NMR to set up the chemical shift scale is tetramethylsilane, Si(CH₃)₄, commonly known as TMS. Consider a sample containing pure liquid TMS for analysis. *See also: Jigsaw 1B.1*

Isotope	Nuclear Spin	Natural Abundance	γ / rad·s ⁻¹ ·T ⁻¹
¹ H	1/2	~100%	2.675×10 ⁸
12 C	D	98.9 %	D
13 C	1/2	1.1 %	6.128×10 ⁷
285	D	92.2%	0
295;	1/2	4.71	-5.319×107
3051	0	3.1 7.	0

a. Complete the table above by filling in the most common isotope(s) present in the sample (list all isotopes with ≥ 1% natural abundance), the nuclear spin, the natural abundance, and the gyromagnetic ratio of each isotope. Which isotopes are NMR-active? Why?

b. [Keeler Section 3.3] Consider a magnetic field strength (B_0) of 11.7467 T. What are the resonance frequencies of the active nuclei (in MHz)?

c. Considering the high symmetry of the molecule and neglecting all couplings, each nucleus gives rise to a single peak in the spectrum at the resonance frequency. Draw the spectrum, using an absolute frequency axis (in MHz).


2/2

d. * [Keeler Section 2.4] Why is it not possible to detect this theoretical spectrum, i.e. to detect heteronuclei in one single experiment?

NMR machines are tured for 1 specific frequency range at a time as the nuclei resonate at very different frequencies. Also, as some peaks ('H in our case) are much stronger than others (18 (and 20 Si), signal-to-noise ratio becomes problematic.

2/2

2. * [Keeler Section 2.3] The following 1 H spectrum is of a molecule with the chemical formula $C_{4}H_{10}O$. Predict the structure of the molecule, assign the spectrum, and give the relative intensities of the signals.

Let's consider relative intensity of b to be 1.

As b corresponds to 3H, then the sum of intensities of peak a will be $\frac{2}{3}$. As a triplet splits by ratio 1:2:1, the intensity of peak a will be $\frac{2}{3} \times \frac{2}{4} = \frac{1}{3}$.

Peak C also corresponds to 2H, and as a six fet, it splits by the ratio 1:5:10:10:5:1, so the intensity will be $\frac{2}{3} \times \frac{5}{32} = \frac{5}{49}$. Peak d corresponds to 3H, and as a triplet, it splits by ratio feak d corresponds to 3H, and as a triplet, it splits by ratio feak d corresponds to 3H, and as a triplet, it splits by ratio